
Chapter 5

Differentiability of Functions

Partial differentiation and differentiation of functions of several variables are discussed in
Sections 1 and 2 respectively. Relations among continuity, existence of partial derivatives,
and differentiability are crucial for all subsequent developments. The Chain Rule as
the main technical tool in differentiation is taken up in Section 3. The gradient vector
and directional derivatives are introduced in Section 4. This chapter ends with some
applications of the differential of a function in Section 5.

5.1 Partial Differentiation

We first recall how the derivative of a function of a single variable was defined. Let f be
a function defined on some interval (a, b) and x0 ∈ (a, b). In calculus the derivative of f
at x0 is defined to be the limit

lim
x→x0

f(x)− f(x0)

x− x0
.

Whenever the limit exists, f is said to have a derivative at x0 and this limit is denoted by
f ′(x0) or df/dx(x0). A function is continuous at x0 whenever its derivative exists at this
point. In other words, differentiability is a property stronger than continuity. In fact, the
absolute value function x 7→ |x| is continuous but does not have a derivative at 0, showing
that these two properties are not equivalent.

Now, we consider the situation in higher dimension. Let G be an open set in Rn and f
a function defined in G. For z ∈ G, the function ϕ(t) = f(t, z2, · · · , zn), z = (z1, · · · , zn),
is a function defined on some open interval containing z1 and ϕ(z1) = f(z). The function
f is said to have a partial derivative in x1 if ϕ(t) has a derivative at z1. In notation we
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have

∂f

∂x1
(z) = lim

t→z1

ϕ(t)− ϕ(z1)

t− z1

= lim
x1→z1

f(x1, z2, · · · , zn)− f(z1, z2, · · · , zn)

x1 − z1
.

Similarly, one can define the partial derivative in xj for j = 2, · · · , n. We say a function
has partial derivatives in G if the partial derivatives ∂f/∂xj, j = 1, · · · , n, exist at every
point of G.

In calculus we learned that the derivative of a function is the instantaneous rate of
change of the function. For a multi-variable function f(x1, · · · , xn) the partial derivative
in xj is the instantaneous rate of change of f in the j-th coordinate while the other
coordinates are unchanged. Here are some examples:

• Let H(x, y) be the height of the mountain from sea level. In other words, the
mountain is given by the graph {(x, y,H(x, y))}. The partial derivative ∂H/∂x(x, y)
is the instantaneous rate of change when one moves parallel to the x-axis. The
height H(x0 + h, y0) would be approximately equal to H(x0, y0) +Hx(x0, y0)h with
improving accuracy as h shrinks.

• Let u(x, y, z) be the spatial temperature distribution at a fixed time. Then ux at
(x0, y0, z0) is the instantaneous rate of change of the temperature, which means that
the temperature at (x1, y0, z0) is approximately given by

u(x0, y0, z0) +
∂u

∂x
(x0, y0, z0)(x1 − x0)

when x1 − x0 is small.

• Let P (x, y) be the profit incurred from selling x units of Product A and y units of
Product B. Then Px(x, y) is a rough measure on the increases or decreases in the
profit when x+ 1 units of Product A are sold while the units sold in Product B are
fixed.

• In economics the productivity is a function F (x, y) where x is the units of labor
and y is the units of capital. Then Fx(x, y), the marginal productivity of labor,
represents the instantaneous rate of change of productivity with respect to labor.
Similarly, Fy(x, y) is called the marginal productivity of capital.

From the definition you can see that partial derivatives are essentially the same as
the derivative in the single variable case. When performing the partial derivative in xj,
you pretend all other variables xk’s, k 6= j, are fixed as constants. Let us look at some
examples.
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Example 5.1. Find the partial derivatives of

(a)

f(x, y) =
xy3

x− y
,

and

(b)
g(x, y, z) = ex/y sinxz .

We have
∂f

∂x
=

y3

x− y
− xy3

(x− y)2
,

∂f

∂y
=

3xy2

x− y
+

xy3

(x− y)2
.

On the other hand,

∂g

∂x
=
ex/y sinxz

y
+ zex/y cosxz ,

∂g

∂y
= −e

x/y sinxz

y2
,

∂g

∂z
= xex/y cosxz .

Whenever the partial derivatives exist in G, they are again functions in G and one
can consider their partial derivatives. In this way we obtain partial derivatives of higher
order. For instance, we have

∂2f

∂xj∂xi
=

∂

∂xj

(
∂f

∂xi

)
.

∂3g

∂xk∂xj∂xi
=

∂

∂xk

(
∂

∂xj

(
∂g

∂xi

))
,

∂4h

∂x2∂y∂z
=

∂

∂x

(
∂

∂x

(
∂

∂y

(
∂h

∂z

)))
,

and so on. In dimensions n = 2, 3, we often use subscripts to denote partial derivatives,
for instance,

fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
,

gxyz =
∂

∂z

(
∂

∂y

(
∂g

∂x

))
=

∂3g

∂z∂y∂x
.
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Be careful about the difference in the order of partial differentiation in these two notations.

Example 5.2. Verify that the function

f(x, t) =
1

2πt
exp

(
−x

2 + y2

4t

)
satisfies the heat equation

∂f

∂t
=
∂2f

∂x2
+
∂2f

∂y2
,

We have
∂f

∂t
=

1

2π

(
−1

t2
+
x2 + y2

4t2

)
exp

(
−x

2 + y2

4t

)
,

∂f

∂x
=

1

2π

−x
2t2

exp

(
−x

2 + y2

4t

)
,

∂2f

∂x2
=

1

2π

(
−1

2t2
+
x2

4t2

)
exp

(
−x

2 + y2

4t

)
.

Similarly,
∂2f

∂y2
=

1

2π

(
−1

2t2
+
y2

4t2

)
exp

(
−x

2 + y2

4t

)
.

It follows that

∂2f

∂x2
+
∂2f

∂y2
=

1

2π

(
−1

t2
+
x2 + y2

4t2

)
exp

(
−x

2 + y2

4t

)
.

By comparing the expressions for ft and fxx + fyy we see that f satisfies the two dimen-
sional heat equation.

Example 5.3. Let
ϕ(x, y) = y2e2x + 6x2 − 2y .

We have
ϕx(x, y) = 2y2e2x + 12x , ϕy(x, y) = 2ye2x − 2 ,

and
ϕxy(x, y) = 4ye2x , ϕyx(x, y) = 4ye2x .

Therefore, ϕxy and ϕyx are the same. Is it always true?

The answer is no. An example in which fxy is not equal to fyx can be found in the
exercise. Nevertheless, the following result asserts that partial derivatives are independent
of their order of taking under a mild continuity assumption. It saves us a lot of trouble.
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Theorem 5.1. Assume that f has partial derivatives up to second order in the open set
G. Then for z ∈ G,

∂2f

∂xi∂xj
(z) =

∂2f

∂xj∂xi
(z) ,

provided these two partial derivatives are continuous at z.

In the example above ϕxy and ϕyx are clearly continuous. By this theorem they must
be the same.

Proof. * Clearly we could take (i, j) = (1, 2). In finding the partial derivatives only the
first two components would change while the others remain constant. Therefore, it suffices
to prove the proposition for n = 2. By writing z as (x, y), consider the expression

E = f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y) ,

where (h, k) are so small that (x+ h, y + k) belongs to G. Letting

E = ϕ(x+ h)− ϕ(x) , where ϕ(x) = f(x, y + k)− f(x, y) ,

ϕ is differentiable near x. Applying the Mean-Value Theorem to ϕ, there is some x∗

between x and x+ h such that

E = ϕ′(x∗)h = fx(x
∗, y + k)h− fx(x∗, y)h .

As for fixed x∗, fx is differentiable in the second component near y, we can apply the
Mean-Value Theorem once more to get

E = fxy(x
∗, y∗)hk , some y∗ between y and y + k .

On the other hand, write

E = ψ(y + k)− ψ(y) , where ψ(y) = f(x+ h, y)− f(x, y) .

Following the same track we arrive at

E = fyx(x
′, y′)hk , for some mean values x′, y′ .

By comparing these two expressions for E, we obtain

fxy(x
∗, y∗)hk = fyx(x

′, y′)kh .

Taking (h, k) to be a sequence (hn, kn) → 0 with hn, kn 6= 0. After canceling the term
hnkn and then using the continuity of the second derivatives at (x, y), we arrive at the
desired result.
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A repeated use of this proposition shows that different orders of taking partial deriva-
tives will lead to the same result as long as the partial derivatives under consideration are
continuous. In many applications, the functions involved are smooth, that is, they have
partial derivatives of arbitrary order, so their derivatives are independent of the order
they are taken.

In the single variable case the existence of the derivative at a point implies continuity
of the function at this point. But in higher dimension this is not always true. The fol-
lowing example illustrates this disappointing phenomenon.

Example 5.4. Consider the function

f(x, y) =


xy

x2 + y2
, (x, y) 6= (0, 0)

0 , (x, y) = (0, 0) .

This function is defined in the entire R2. It is clear that its partial derivatives exist at
every point other than the origin. To see what happens at the origin, we go back to the
definition of the derivative. As f(x, 0) = 0 for all x and f(0, y) = 0 for all x and y, we
conclude that the partial derivatives of f at the origin exist and equal to 0. However,
letting (x, 0) tend to (0, 0), we see that f tends to 0. On the other hand, letting (x, x)
tend to (0, 0), f tends to 1/2. (In fact, f(x, x) is always equal to 1/2.) Hence f is not
continuous at (0, 0).

5.2 Differentiability of Functions

Now we come to the notion of differentiability. It should be distinguished from that of
the existence of the partial derivatives for n ≥ 2. Recall that for a function f defined on
(a, b) and x0 ∈ (a, b), it is called differentiable at x0 if there exists some α such that

lim
x→x0

f(x)− f(x0)− α(x− x0)
x− x0

= 0 .

The function l(x) = f(x0) + α(x− x0) is a linear function. Differentiability is concerned
with the quantitative approximation of a function near at a certain point by a linear
function. Nevertheless, by comparing with the definition of the derivative, we see differ-
entiability and the existence of derivative are the same. We have

Theorem. If a function f is differentiable at x0, then its derivative exists and equals to
α. Conversely, if the derivative of f exists at x0, then f is differentiable at x0 with α
given by f ′(x0).
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Things become quite different in higher dimensions. Let f be defined in some open
set G in Rn and z ∈ G. The function f is called differentiable at z if there exists a
linear function

L(x) = f(z) +
n∑
j=1

cj(xj − zj) = f(z) + c · (x− z) , c = (c1, · · · , cn) .

satisfying

lim
x→z

|f(x)− L(x)|
|x− z|

= 0 .

Here the denominator in the definition is equal to

|x− z| =
√

(x1 − z1)2 + · · · (xn − zn)2 .

Using the little ◦ notation, we can express this definition as

f(x) = f(z) + c · (x− z) + ◦(|x− z|) .

This notation is very handy when it comes to operating limits. Here ◦(|x − z|) denotes
a quantity which satisfies ◦(|x − z|)/|x − z| → 0 as x → z. Differentiability shows how
the function is approximated by a linear function near a point. Whenever the function is
differentiable at z, the linear function

L(x) = f(z) + c · (x− z)

is called the differential or linear approximation of f at z. We will see in a minute
that cj must be equal to the j-th partial derivative of f at z whenever f is differentiable
at z, so the differential is uniquely specified.

Now we show that differentiability implies continuity in all dimensions.

Theorem 5.2. If f is differentiable at z, then it is continuous at z.

Proof. If f is differentiable at z, we have

f(x)− f(z) = c · (x− z) + ◦(|x− z|) .

By Cauchy-Schwarz Inequality,

lim
x→z
|f(x)− f(z)| = lim

x→z
|c · (x− z) + ◦(|x− z|)|

≤ lim
x→z
|c||x− z|+ lim

x→z
◦(|x− z|)

= 0 .



8 CHAPTER 5. DIFFERENTIABILITY OF FUNCTIONS

Next we study the relation between differentiability and partial differentiation. We
first show that differentiability implies the existence of partial derivatives. At this point,
we introduce the gradient vector

∇f =

(
∂f

∂x1
, · · · , ∂f

∂xn

)
.

It is regarded as a map from G to Rn (provided the partial derivatives exist).

Theorem 5.3. Let f be defined in some open set G ∈ Rn and z ∈ G. Then f is
differentiable at z if and only if its partial derivatives exist at z and

f(x) = f(z) +∇f(z) · (x− z) + ◦(|x− z|) .

Therefore, the differential of f at z is given by L(x) = f(z) +∇f(z) · (x− z).

Proof. When f is differentiable at z, let its differential be L(x) = f(z)+c ·(x−z). Taking
x = (x1, z2, · · · , zn), x− z = (x1 − z1, 0, · · · , 0) and |x− z| = |x1 − z1|. We have

f(x)− f(z) = c · (x− z) + ◦(|x1 − z1|) = c1(x1 − z1) +
◦(|x1 − z1|)
x1 − z1

and
f(x1, z2, · · · , zn)− f(z1, z2, · · · , zn)

x1 − z1
= c1 + ◦(|x1 − z1|) .

Hence ∂f/∂x1(z) exists and equals to c1. Similarly one shows that cj = ∂f/∂xj for other
j’s.

Conversely, it is clear from the relation

f(x) = f(z) +∇f(z) · (x− z) + ◦(|x− z|) ,

that f is differentiable at z with the differential as claimed.

It follows from this theorem that the existence of partial derivatives is a necessary
condition for differentiability. But it is not sufficient. In fact, the function in Example 5.4
has partial derivatives at (0, 0) but it is not even continuous there, let alone differentiable!

To establish differentiability via the existence of partial derivatives, one needs to im-
pose more on the function. The following frequently used result ensures that differentia-
bility follows from the continuity of the partial derivatives.

Theorem 5.4. Suppose that the partial derivatives of f exist in the open set G. Then f
is differentiable at z ∈ G provided all partial derivatives are continuous at z.
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Proof. Let us examine the case n = 2. Suppose that the partial derivatives of f exist near
(x, y) and is continuous at (x, y). For small (h, k), by the mean-value theorem

f(x+ h, y + k)− f(x, y) = (f(x+ h, y + k)− f(x, y + k)) + (f(x, y + k)− f(x, y))

=
∂f

∂x
(x∗, y + k)h+

∂f

∂y
(x, y∗)k ,

where x∗ and y∗ lie between x, x+ h and y, y + k respectively. Write it as

f(x+ h, y + k)− f(x, y) =
∂f

∂x
(x, y)h+

∂f

∂y
(x, y)k + T ,

where

T =

(
∂f

∂x
(x∗, y + k)− ∂f

∂x
(x, y)

)
h+

(
∂f

∂y
(x, y∗)− ∂f

∂y
(x∗, y)

)
k .

But now the continuity of the partial derivatives at (x, y) shows that T/|(h, k)| → 0 as
(h, k)→ (0, 0), so T = ◦(|(h, k)|). We conclude that f is differentiable at (x, y).

In general, write f(x)− f(z) as

(f(x1, x2, x3, · · · , xn)− f(z1, x2, x3, · · · , xn)) + (f(z1, x2, x3, · · · , xn)− f(z1, z2, x3, · · · , xn))

+ (f(z1, z2, x3, · · · , xn)− f(z1, z2, z3, · · · , xn)) + (f(z1, z2, z3, · · · , xn)− f(z1, z2, z3, · · · , zn)) .

and then proceed in a similar way.

In the following example we display a function which is differentiable at a certain point
but whose partial derivatives are not continuous at this point. It shows that continuity
of the partial derivatives is a sufficient but not a necessary condition for differentiability.

Example 5.5. Study the differentiability of the function

h(x, y) = xy sin
1

x2 + y2
, (x, y) 6= (0, 0) ,

and h(0, 0) = 0. We claim that it is differentiable at (0, 0). We will prove this claim by
verifying the definition directly. In fact, using hx(0, 0) = hy(0, 0) = 0, the differential of
h at (0, 0) must be 0, and∣∣∣∣∣h(x, y)− 0√

x2 + y2

∣∣∣∣∣ =

∣∣∣∣∣xy sin 1/(x2 + y2)√
x2 + y2

∣∣∣∣∣
≤ |xy|√

x2 + y2

≤
√
x2 + y2

2
→ 0 , as |(x, y)| =

√
x2 + y2 → 0 ,
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which shows that h is differentiable at (0, 0). On the other hand,

hx(x, y) = y sin
1

x2 + y2
− 2x2y

(x2 + y2)2
cos

1

x2 + y2
.

In particular,

hx(x, x) = x sin
1

2x2
− 1

2x
cos

1

2x2
,

which is clearly not continuous at (0, 0).

Now we study the properties of differentiability. Just like continuity, differentiability
is preserved under basic algebraic operations. We have learned this for functions of a
single variable, The situation is the same in the multi-variable case.

Theorem 5.5. Let f and g be defined in some open G and z ∈ G. Suppose that f and g
are differentiable at z. Then for α, β ∈ R,

(a) αf + βg is differentiable at z,

(b) fg is differentiable at z,

(c) f/g is differentiable at z provided g(z) 6= 0.

Proof. By assumption we have

f(x) = f(z) + c · (x− z) + T1, and g(x) = g(z) + d · (x− z) + T2 ,

where c = ∇f(z), d = ∇g(z) and Ti = ◦(|x− z|), i = 1, 2, as x→ z . It follows that

αf(x) + βg(x) = αf(z) + βg(z) + (αc+ βd) · (x− z) + T3 ,

where
T3 = αT1 + βT2 .

As it is obvious that T3 = ◦(|x− z|) as x→ z, (a) holds.

Next, we have

f(x)g(x) = f(z)g(z) + (g(z)c+ f(z)d) · (x− z) + T4 ,

where

T4 = (f(z) + c · (x− z))T2 + (g(z) + d · (x− z))T1 + c · (x− z)d · (x− z) + T1T2 .

Again T4 = ◦(|x− z|) as x→ z, so (b) holds.
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Finally, as f/g can be written as fg−1, in view of (b), (c) follows if we can show that
1/g is differentiable when g(z) 6= 0. Indeed,

1

g(x)
− 1

g(z)
=

−1

g(x)g(z)
(g(x)− g(z))

=
−1

g(x)g(z)
(d · (x− z) + T2)

=
−d
g(z)2

· (x− z) + T5 ,

where

T5 =

(
−d

g(z)g(x)
+

d

g(z)2

)
· (x− z)− T2

g(x)g(z)
.

As T5 = ◦(|x− z|) as x→ z, 1/g is differentiable at z.

Theorem 5.6. A polynomial in smooth everywhere. A rational function is smooth in its
natural domain.

Proof. As straightforward from definition, the linear function

x 7→
n∑
j=1

ajxj + b , aj, b ∈ R, x = (x1, · · · , xn) ,

is differentiable everywhere. Using the addition and product rules in Theorem 5.5, we see
that all polynomials are smooth. On the other hand, for a rational function p(x)/q(x),
its natural domain is given by the open set {x ∈ Rn : q(x) 6= 0}. Theorem 5.5(c) ensures
that it is smooth in this set.

Theorem 5.4 and Theorem 5.5 together guarantee differentiability for many functions
far beyond the rational ones. Before giving you any examples, let us review the differen-
tiability property of the elementary functions. In last chapter we recalled their natural
domains and established their continuity over these domains. Since differentiability is a
more stringent property, the domain of differentiability could be a proper subset of the
natural domain. Now we summarize their differentiability as follows.

• The power function t 7→ ta, a ≥ 1, is continuously differentiable on [0,∞) and
smooth on (0,∞).

• The radical function t 7→ ta, a ∈ (0, 1) is continuous on [0,∞) and smooth on (0,∞).

• The exponential function t 7→ et is smooth on (−∞,∞).

• The logarithmic function t 7→ log t is smooth on (0,∞).



12 CHAPTER 5. DIFFERENTIABILITY OF FUNCTIONS

• The trigonometric functions sin t, cos t is smooth on (−∞,∞) and tan t is smooth
on (−∞,∞) \ {(n+ 1

2
)π, n ∈ Z} .

• The inverse trigonometric functions arcsin t, arccos t, and arctan t are smooth in
their respective domains.

• The absolute value function t 7→ |t| is continuous on (−∞,∞) and smooth on
(−∞, 0) ∪ (0,∞). It is not differentiable at 0.

A function is continuously differentiable if its partial derivatives are continuous.
It is smooth if its derivatives of all order exist.

Example 5.6. Discuss the differentiability of the following functions:

(a) f(x, y) =
√
x2 + y2 ,

(b) g(x, y) = log(1− x2 − y2) , and

(c) h(x, y) = exy log(1− x2 − y2).

(a) The square function is continuous on [0,∞) and smooth on (0,∞). Therefore f is a
continuous function in R2. For (x, y) 6= (0, 0), x 7→

√
x2 + y2 is differentiable by the chain

rule in calculus and fx(x, y) = x/
√
x2 + y2 is continuous in R2 except at (0, 0). Similarly,

y 7→
√
x2 + y2 is differentiable and fy(x, y) = y/

√
x2 + y2 is continuous. By Theorem

5.4, f is differentiable in R2 \ {(0, 0)}. On the other hand, note that f(x, 0) = |x| which
is not differentiable at 0, so fx(0, 0) does not exist. This fact suffices in showing that f is
not differentiable at (0, 0).

(b) The logarithmic function is smooth in (0,∞). Therefore, the natural domain of g is
the open unit disk D = {(x, y) : x2 + y2 < 1}. We have

∂g

∂x
=

−2x

1− x2 − y2
,

∂g

∂y
=

−2y

1− x2 − y2
.

These are rational functions restricted to D. By Theorem 5.4 g is differentiable in D.

(c) The function h is the product of exy and g. From
∂exy

∂x
= yexy and

∂exy

∂y
= xexy, we

see both partial derivatives are continuous. Hence exy is differentiable everywhere. As
the product of two differentiable functions, Theorem 5.5 tells us that h is differentiable
everywhere.

When Theorems 5.4 and 5.5 fail to apply, differentiability has to be examined by going
back to definition as in Example 5.5.
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In last chapter it was shown that compositions of continuous functions are still con-
tinuous. It is natural to wonder whether compositions of differentiable functions are still
differentiable. A positive answer will be given by the chain rule in the next section.

5.3 The Chain Rules

We start with a special case.

Theorem 5.7 (Chain Rule I). Let

(a) f : G ⊂ Rn → R, where G is open, be differentiable at z ∈ G, and

(b) Φ : I → R, where I is an open interval, be differentiable at f(z) ∈ I.

Then Φ ◦ f is differentiable at z and

∂Φ ◦ f
∂xj

(z) = Φ′(f(z))
∂f

∂xj
(z) , j = 1, · · ·n.

Proof. By assumption there is a small ball B around z such that

f(x) = f(z) +∇f(z) · (x− z) + ◦(|x− z|), ∀x ∈ B ,

as x→ z. On the other hand, since Φ is differentiable at t0,

Φ(t)− Φ(t0) = Φ′(t0)(t− t0) + ◦(|t− t0|).

Taking t = f(x) and t0 = f(z), we have

Φ(f(x))− Φ(f(z)) = Φ′(f(z))(f(x)− f(z)) + ◦(|f(x)− f(z)|)
= Φ′(f(z)) (∇f(z) · (x− z) + ◦(|x− z|)) + ◦(|f(x)− f(z)|)
= Φ′(f(z))∇f(z) · (x− z) + ◦(|x− z|) ,

after observing that
Φ′(f(z)) ◦ (|x− z|) = ◦(|x− z|) ,

and
◦(|f(x)− f(z)|) = ◦ (|∇f(z) · (x− z)|+ ◦(|x− z|)) = ◦(|x− z|) .

Example 5.7. Discuss the differentiability of the following functions:
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(a) f(x, y) =
√
x2 + y2 ,

(b) g(x, y) = log(1− x2 − y2) , and

This is contained in Theorem 5.4. We re-examine it in light of Chain Rule I. Indeed,
f is the composition of the polynomial x2 + y2 which is smooth from R2 to [0,∞) and√
z is smooth from (0,∞) to R. It follows immediately from Chain Rule I that f is

differentiable in R2 \ {(0, 0)}. Similarly, g is differentiable in {(x, y) : x2 + y2 < 1} as it is
the composition of two differentiable functions (x, y) 7→ 1−x2−y2 on {(x, y) : x2+y2 < 1}
and z → log z, z ∈ (0,∞).

When it comes to the differentiability of a composite function g ◦ f where g is smooth
and f is differentiable but with discontinuous partial derivatives, Chain Rule I applies to
establish differentiability. However, Theorem 5.4 cannot be used. It shows that the chain
rule is not only more theoretically satisfying but also applies to a wider range.

Now let us formulate a general chain rule. In Chapter 7 we will encounter an even
more general chain rule for vector-valued functions. Although the setting is getting more
and more involved, the proof is basically the same.

Let F : G 7→ Rm where G ⊂ Rn is open. Writing F (x) = (f1(x), · · · , fm(x)), F
is called continuous (resp. differentiable) if each fj, j = 1, · · · ,m, is continuous (resp.
differentiable).
jn

Theorem 5.8 (Chain Rule II). Let

(a) F : G ⊂ Rn → Rm, where G is open, be differentiable at z ∈ G, and

(b) Φ : G1 ⊂ Rm → R, where G1 is open, be differentiable at F (z) ∈ G1.

Then Φ ◦ F : G→ R is differentiable at z and

∂Φ ◦ F
∂xj

(z) =
m∑
k=1

∂Φ

∂uk
(F (z))

∂fk
∂xj

(z) , k = 1, · · · , n.

Consequently, when both F and Φ are continuously differentiable in their respective do-
mains, Φ ◦ F is continuously differentiable.

Proof. This rule can be obtained from Chain Rule I by looking at each component of the
function. Indeed, since Φ is differentiable at some u0,

Φ(u)− Φ(u0) =
m∑
j=1

∂Φ

∂uj
(u0)(uj − u0j) + ◦(|u− u0|) .
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On the other hand, as F is differentiable at z,

fj(x)− fj(z) =
n∑
k=1

∂fj
∂xk

(z)(xk − zk) + ◦(|x− z|) , j = 1, · · · ,m.

Letting u = F (x) and u0 = F (z) and combining these two expressions yields

Φ(F (x))− Φ(F (z)) =
m∑
j=1

∂Φ

∂uj
(F (z))(fj(x)− fj(z)) + ◦(|F (x)− F (z)|)

=
∑
j,k

∂Φ

∂uj
(F (z))

∂fj
∂xk

(z)(xk − zk) + T ,

where

T =
m∑
j=1

∂Φ

∂uj
(F (z)) ◦ (|x− z|) + ◦(|F (x)− F (z)|) .

Using ∣∣∣∣∣
m∑
j=1

∂Φ

∂uj
(F (z)) ◦ (|x− z|)

∣∣∣∣∣ = ◦(|x− z|) ,

and

|F (x)− F (z)| ≤

∣∣∣∣∣
n∑
k=1

∂F

∂xk
(z)(xk − zk) + ◦(|x− z|)

∣∣∣∣∣ ≤ C|x− z| ,

for some constant C, hence T = ◦(|x− z|) and

Φ(F (x))− Φ(F (z)) =
∑
j,k

∂Φ

∂uj
(F (z))

∂fj
∂xk

(z)(xk − zk) + ◦(|x− z|) .

We conclude that Φ ◦ F is differentiable at z with the given first order approximation as
claimed.

Example 5.8. Find the partial derivatives of the function g ◦ γ where γ(t) = (t3, sin t2)
and g(u, v) = uv + eu . We have γ : R → R2 and g : R2 → R, so the composite function
g ◦ γ : R→ R . By Chain Rule II,

dg ◦ γ
dt

(t) =
∂g

∂u
(γ(t))γ′1(t) +

∂g

∂v
(γ(t))γ′2(t)

= (v + eu)(γ(t))× 3t2 + u(γ(t))× 2t cos t2

= 3(sin t2 + et
3

)t2 + 2t4 cos t2 .
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Example 5.9. Find Mx,My,Mxy for M(xy, x2 − y2, log x). More precisely, here we have
F (x, y) = (f1, f2, f3)(x, y) = (xy, x2 − y2, log x). We are asked to find the partial deriva-
tives of the composite function N(x, y) = M ◦ F (x, y). Here the setting is F : R2 → R3

and M : R3 → R so N : R2 → R. We have

∂N

∂x
=

∂M

∂u

∂f1
∂x

+
∂M

∂v

∂f2
∂x

+
∂M

∂w

∂f3
∂x

=
∂M

∂u
y +

∂M

∂v
(2x) +

∂M

∂w

1

x

= y
∂M

∂u
+ 2x

∂M

∂v
+

1

x

∂M

∂w
.

∂N

∂y
=

∂M

∂u

∂f1
∂y

+
∂M

∂v

∂f2
∂y

+
∂M

∂w

∂f3
∂y

= x
∂M

∂u
− 2y

∂M

∂v
.

∂2N

∂x∂y
=

∂M

∂u
+ x

(
y
∂2M

∂u2
+ 2x

∂2M

∂v∂u
+

1

x

∂2M

∂w∂u

)
−2y

(
∂2M

∂u∂v
+ 2x

∂2M

∂v2
+

1

x

∂2M

∂w∂v

)
=

∂M

∂u
+ xy

∂2M

∂u2
+ 2(x2 − y)

∂2M

∂u∂v
+

∂2M

∂u∂w
− 4xy

∂2M

∂v2
− 2y

x

∂2M

∂v∂w
.

We have assumed the partial derivatives are independent of the order of differentia-
tion. In many books, the same notation M will be used for N = M ◦F . It is understood
in the context, for instance, in Mu it means regarding M as a function of u, v while in Mx

it means regarding M as a function of N = M ◦ F , that is, Nx .

The chain rule is widely applied in study of differential equations. We will illustrate
how it is applied in two ways.

First, it is used in transforming partial differentiable equations. Let us show how to
express the two dimensional Laplace equation

∆f = 0 ,

where ∆ is the Laplace operator given by

∆ =
∂2

∂x2
+

∂2

∂y2
,
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in the polar coordinates. For f = f(x, y), let

f̃(r, θ) = f(x, y) ,

where the variables are related by

x = r cos θ, y = r sin θ ,

or

r =
√
x2 + y2, tan θ =

y

x
.

We would like to see what equation f̃ satisfies when f solves the Laplace equation.

By the Chain Rule,

∂f

∂x
=
∂f̃

∂r

∂r

∂x
+
∂f̃

∂θ

∂θ

∂x
,

∂2f

∂x2
=

(
∂2f̃

∂r2
∂r

∂x
+

∂2f̃

∂θ∂r

∂θ

∂x

)
∂r

∂x
+
∂f̃

∂r

∂2r

∂x2
+

(
∂2f̃

∂r∂θ

∂r

∂x
+
∂2f̃

∂θ2
∂θ

∂x

)
∂θ

∂x
+
∂f̃

∂θ

∂2θ

∂x2
.

∂f

∂y
=
∂f̃

∂r

∂r

∂y
+
∂f̃

∂θ

∂θ

∂y
,

∂2f

∂y2
=

(
∂2f̃

∂r2
∂r

∂y
+

∂2f̃

∂θ∂r

∂θ

∂y

)
∂r

∂y
+
∂f̃

∂r

∂2r

∂y2
+

(
∂2f̃

∂r∂θ

∂r

∂y
+
∂2f̃

∂θ2
∂θ

∂y

)
∂θ

∂y
+
∂f̃

∂θ

∂2θ

∂y2
.

We have
∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

∂θ

∂x
=
− sin θ

r
,

∂θ

∂y
=

cos θ

r
,

∂2r

∂x2
=
y2

r3
,

∂2r

∂y2
=
x2

r3
,

∂2θ

∂x2
=

2 sin θ cos θ

r2
,

∂2θ

∂y2
=
−2 sin θ cos θ

r2
.

Plug in to get

∆f(x, y) =

(
∂2f̃

∂r2
+

1

r

∂f̃

∂r
+

1

r2
∂2f̃

∂θ2

)
(r, θ) .

We conclude that the Laplace operator is

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,
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in the polar coordinates. The Laplace equation in the polar coordinates for g = g(r, θ) is
now given by

∂2g

∂r2
+

1

r

∂g

∂r
+

1

r2
∂2g

∂θ2
= 0 .

Solutions to the Laplace equation are called harmonic functions. Harmonic func-
tions describe equilibrium or steady states. They comes up in mathematics, physics,
engineering, and many other places.

You may wonder why we express the equation in the polar coordinates. An immediate
reward is some special solutions can be found easily. For instance, assuming the solution
g = g(r) is independent of θ, the equation reduces to

∂2g

∂r2
+

1

r

∂g

∂r
= 0 ,

which is readily solved to give g(r) = log r. We conclude that the function log(x2 + y2) is
a harmonic function in the rectangular coordinates. Similarly, a function independent of r
satisfies gθθ = 0, hence g(θ) = θ is a solution. Writing back in the rectangular coordinates,
it shows that arctan y/x is a harmonic function.

Again in practise people do not distinguish between f and f̃ . It will be clear from the
context. For instance, when fr is present it means f̃r.

The second application of the chain rule is to find special solutions of PDE’s. In the
situation above, in principle, any solution in (x, y) can be expressed as a solution in (r, θ)
and vice versa. Here we are not so ambitious; we are settled to find special solutions,
that is, solutions assuming form certain forms. In many cases, these special solutions are
either fundamental ones or provides insight for the study.

Example 5.10. Consider the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = 0 ,

which describes waves in shallow water. First, we look for traveling waves, that is, special
solutions of the form u(x, t) = ϕ(x − ct). Plugging in the equation, we see that ϕ must
satisfy the simpler equation

ϕyyy + ϕϕy − cϕy = 0 ,

or

ϕyy +
1

2
ϕ2 − cϕ = k ,

after one integration. A second integration reduces its order further by one:

1

2
ϕ2
y = −1

6
ϕ3 +

c

2
ϕ2 + kϕ+ l, k, l ∈ R .
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One can verify that the function

ϕ(y) = 3c sech2

(√
c

2
y

)
,

solves this equation with k = l = 0. The special solution u(x, t) = ϕ(x− ct) of the KdV
equation is called a soliton.

Next, we look for solution of the form u(x, t) = t−2/3ψ(t−1/3x). From

ux = t−1ψy, uxxx = t−5/3ψyyy, ut =
−1

3
t−5/3(yψy + 2ψ) ,

we see that ψ must satisfy

ψyyy + ψψy −
1

3
yψy −

2

3
ψ = 0 .

The solution for the KdV equation u(x, t) depends on two variables and now the special
solution ψ(y) depends on one variable only. Although the equation it satisfies is still
difficult to solve, it is simpler than the original one.

Not arbitrary form can be reduced. For instance, letting u(x, t) = η(x/t), the equation
becomes

1

t2
ηyyy − yηyy + ηηy = 0 .

There is no way to get rid of the variable t resulting in a single differential equation for
η. The special forms from which the equation can be reduced rely on the symmetries of
the differential equation, a topic out of scope.

5.4 Directional Derivatives and The Gradient

Let f be defined in an open G and x ∈ G. Let ξ be any direction, that is, ξ ∈ Rn, |ξ| = 1.
We define the directional derivative of f at x along the direction ξ to be the derivative

Dξf(x) = lim
t→0

f(x+ tξ)− f(x)

t
,

provided the limit exists. Note that in particular,

Dejf =
∂f

∂xj
, j = 1, · · · , n.

Theorem 5.9. Setting as above, the directional derivative of f exists along every direction
at a differentiable point and

Dξf(x) = ξ · ∇f(x), ∀ξ 6= (0, · · · , 0) .
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Proof. As f is differentiable at x, for all sufficiently small t,

f(x+ tξ)− f(x) = ∇f(x) · (x+ tξ − x) + ◦(|x+ tξ − x|)
= t∇f(x) · ξ + ◦(|t|) , as t→ 0 .

Dividing this relation by t and then letting t tend to 0, the theorem follows.

Recall that Cauchy-Schwarz Inequality asserts that for a, b ∈ Rn, |a · b| ≤ |a||b| with
equality holds if and only if a and b are proportional to each other. Whenever the gra-
dient vector is non-zero, ∇f(x)/|∇f(x)| becomes a direction. Applying Cauchy-Schwarz
Inequality,

−|∇f(x)| ≤ |ξ · ∇f(x)| ≤ |∇f(x)|,
and equality holds if and only if ξ is ±∇f(x)/|∇f(x)|. In other words, among all di-
rections, Dξf(x) becomes the maximum at ξ = ∇f(x)/|∇f(x)| and the minimum at
ξ = −∇f(x)/|∇f(x)|. This interesting interpretation tells us that the gradient direction
is the direction along which the function increases most rapidly, and the negative direction
is the direction along which the function decreases most rapidly. Imagine the graph of
a function is the landscape of a mountain. To go to the top as quickly as possible one
should follow the direction of the gradient at each point.

Example 5.11. Consider the function

H(x, y, z) = x2 − y2 + 2xz , (x, y, z) ∈ R3 .

Find

(a) its directional derivative along ξ = (4, 3, 0)/5 at P (−1, 2, 3),

(b) the direction it increases most rapidly at P , and

(c) the direction it decreases most rapidly at P .

The gradient of H is
∇H(x, y, z) = (2x+ 2z,−2y, 2x) ,

so ∇H = (4,−4,−2) at P .

(a) By definition,

DξH = ξ · ∇H =
1

5
(4, 3, 0) · (4,−4,−2) =

4

5
.

(b) The direction of most rapid increase is the direction of the gradient

(4,−4,−2)

|(4,−4,−2)|
=

1

3
(2,−2,−1) .

(c) The direction of most rapid decrease is
1

3
(−2, 2, 1).
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5.5 Differentials as Approximation

From the definition of differentiability we see that whenever a function is differentiable at
a point,

f(x)− (f(z) +∇f(z) · (x− z)) = ◦(|x− z|) .

As ◦(|x − z|) becomes even smaller when |x − z| is small, we could ignor it and use the
differential

L(x) = f(z) +∇f(z) · (x− z)

to approximate f(x) for x near z.

The error, that is, the difference between the actual value and the approximate value,
can be estimated when more information on ◦(|x− z|) is known. The following theorem
gives some ideas on the effective range of the approximation. It can be skipped in a first
reading.

Theorem 5.10. * Assume that f admits continuous partial derivatives up to second order
in Br(z). Then

|f(x)− (f(z) +∇f(z) · (x− z))| ≤ M

2
|x− z|2 ,

where M is a bound on the second derivatives over Br(z).

The differential

L(dx) = f(x) +∇f(x) · dx,

where x is fixed, is now a function of the variables dx = (dx1, · · · , dxn), where the notation
dx is used to emphasis that it is a small quantity. We also let

df = ∇f(x) · dx

to represent the approximate error. Comparing with the exact error ∆f , we have

∆f = f(x+ dx)− f(x) ,

and

df = L(df)− f(x) .

So the difference between the exact and approximate errors is given by ∆f − df which is
of order ◦(|dx|).

Example 5.12. Find an approximate value of
√

1.023 + 1.933. We choose

f(x, y) =
√
x3 + y3,
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and take (x, y) = (1, 2) and (dx, dy) = (0.02,−0.07). The differential at (1, 2) is given by

f(1, 2) + fx(1, 2)(1.02− 1) + fy(1, 2)(1.93− 2)

= f(1, 2) + fx(1, 2)× 0.02 + fy(1, 2)× (−0.07) .

Using

fx =
3

2

x2√
x3 + y3

, and fy =
3

2

y2√
x3 + y3

,

fx(1, 2) = 1/2 and fy(1, 2) = 2. Therefore, the approximate value of f(1.02, 1.93) is given
by the differential

√
9 +

1

2
× 0.02− 2× 0.07 = 2.88 .

One may use Theorem 5.10 to estimate the difference between this approximate value
with the accurate value. We will not do it here.

Example 5.13. The volume of a cylinder is given by the formula

V = πr2h ,

where r is the radius of the base disk and h its height. Now r is measured with an error up
to 1% and h up to 0.5%. What is the induced error on the volume? Here V = V (r, h) is
a function of r and h. For small changes in r and h, we may use the approximate change

dV = 2πrhdr + πr2dh

as a good approximation of the real change ∆V , which is given by

π(r + dr)2(h+ dh)− πr2h .

Using dr = ±0.01r and dh = 0.005,

dV = ±2πrh×±0.01r + πr2 ×±0.005h = ±0.0225× V .

We conclude that the error in volume would be up to 0.0255, that is, 2.55%.

The formula for the volume is quite simple, so we can carry out the error estimate in
an accurate way. Indeed,

∆V − dV = 2πrdrdh+ π(dr)2h+ π(dr)2dh

= 2πr × (±0.01r)× (±0.005h) + π(±0.01r)2h+ π(±0.01r)2 × (±0.005h) .

We conclude
|∆V − dV |

V
≤ 0.0002005 = 0.02% .
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Comments on Chapter 5.

This chapter is the core of this course. You should understand it well. In particular,
pay attention to the following topics:

• The relation between partial derivatives and differentiability (Theorems 5.3 and
5.4).

• The differentiability of a function either by Theorems 5.5 and 5.6 or going back to
the definition.

• Master the use of the chain rule especially in transforming differential equations.

• The meaning of the gradient of a function.

• Calculating approximate errors of functions.

Supplementary Readings

3.1, 3.2, 3.3, 3.5, 4.1–4.4 in [Au]. 14.3, 14.5 (excluding tangent planes), and 14.6 in
[Thomas]. We have separated the geometric aspect of functions from its analytic aspect.
In particular, tangent planes will be covered in next chapter.


